ELF2-AE

Внешний интерфейс E1 для Asterisk/CallWeaver

Руководство пользователя

Версия 2.4

12.10.2015

ТУ6656-001-71499641-2006

Разработчик и производитель: ООО «Парабел»

630090, Новосибирск-90, а/я 126

http://www.parabel.ru

Email: info@parabel.ru

Тел/факс: +7-383-2138707

Внимание! Не рекомендуется использование устройства на физических линиях связи, не оборудованных устройствами грозозащиты.

оглавление

1. Введение	8
1.1. Назначение ELF2-AE	8
1.2. Блок-схема устройства	9
1.3. Преимущества по сравнению с Е1 картами PCI/PCI-е	9
1.4. Требования к серверу и LAN окружению	10
2. Технические характеристики	11
2.1. Общие параметры	11
2.2. Параметры интерфейса Е1а	11
2.3. Параметры интерфейса Ethernet	12
2.4. Параметры консоли	12
3. Подключение устройства	13
3.1. Расположение органов управления, индикации и разъемов	13
3.2. Описание разъемов	14
4. Конфигурация устройства	16
4.1. Подключение консоли	16
4.2. Главное меню программы конфигурации	16
4.3. Общие настройки	17
4.4. Настройки порта Е1а	17
4.5 Сохранение/Восстановление настроек	18
4.6. Средства тестирования и диагностики	18
5. Мониторинг работы устройства	19
6. Настройка DAHDI/Asterisk	21
7. Использование модуля аппаратного эхоподавления	22
8. Обновление прошивки устройства	23
9. Комплектация устройства	23
10. Упаковка	23
Приложение А. Схемы применения	24
Центр обработки вызовов (call center) и организация Interactive Voice ResponSe (IVR)	24

Узел доступа клиентов по линии Е1	25
Корпоративная АТС с выходом в VOIP сеть	
VOIР-шлюз	27
Приложение В. Проверка связи ELF2-AE + DAHDI	

Таблицы

Табл. 1. Сигналы разъема Е1А	14
Табл. 2. Сигналы разъема Ethernet	14
Табл. 3. Сигналы разъемы консоли USB	15
Табл. 4. Статусная информация портов Е1	19
Табл. 5. Статусная информация модуля TDMoE	20

Рисунки

Рис. 1. Внутренняя архитектура ELF2-AE	9
Рис. 2. Передняя панель	13
Рис. 3. Задняя панель	13
Рис. 4. Главное меню	16
Рис. 5. Режим Lloop	18
Рис. 6. Режим Rloop	18
Рис. 7. Структура модуля эхоподавления	22

1. ВВЕДЕНИЕ

1.1. НАЗНАЧЕНИЕ ELF2-AE

Внешний интерфейс ELF2-AE предназначен для подключения потоков E1 к серверам под управлением Asterisk/CallWeaver. ELF2-AE, совместно с Asterisk, обеспечивает функционал ATC, IP ATC, кросс коммутатора E1, точки доступа E1, и многое другое. Устройство поддерживает на E1 все телефонные сигнализации, реализованные в Asterisk – PRI, SS7, а также семейство импульсных/MF сигнализаций – E&M, loop start, DTMF.

Физическое подключение ELF2-AE к Asterisk серверу осуществляется с помощью Ethernet по протоколу TDMoE (TDMoX через Ethernet).

Наименование	Опции
ELF2-AE	1 порт E1, 1 порт Ethernet, настольный
ELF2-AE-EC	1 порт E1, 1 порт Ethernet, эхоподавление, настольный
ELF2-AE-1U	1 порт E1, 1 порт Ethernet, стоечный
ELF2-AE2-1U	2 порта E1, 2 порта Ethernet, стоечный
ELF2-AE-EC-1U	1 порт E1, 1 порт Ethernet, эхоподавление, стоечный
ELF2-AE2-EC-1U	2 порта E1, 2 порта Ethernet, эхоподавление, стоечный
BPE-220	Блок питания 220 VAC (для настольного варианта)
BPE-60	Блок питания 48-72 VDC (для настольного варианта)

Примерный список возможных применений ELF2-AE см. в "Приложение А. Схемы применения"

1.2. БЛОК-СХЕМА УСТРОЙСТВА

На рисунке изображена внутренняя архитектура ELF2-AE.

Рис. 1. Внутренняя архитектура ELF2-AE

Накопив данные и сигнализацию из потока E1, ELF2-AE отправляет **TDMoE** пакеты через Ethernet. Полученные сервером **TDMoE** пакеты поступают в драйвер **DAHDI**. Драйвер **DAHDI** подавляет эхо (если необходимо), осуществляет кросс-коммутацию канальных интервалов, обрабатывает виртуальные сетевые интерфейсы и передает сигнализацию и голос в **Asterisk**.

Asterisk, получив сигнализацию и голос, выполняет все функции классической ATC, VoIP ATC, центра обработки вызовов, и пр. В обратную сторону, драйвер **DAHDI** получает от **Asterisk** сигнализацию и голос, упаковывает их в **TDMoE** пакеты, отправляет **TDMoE** пакеты в Ethernet. ELF2-AE передает данные и сигнализацию в поток E1.

Таким образом, ELF2-AE занимается доставкой сигнализации и голоса между портами E1 и портом Ethernet. Обработку сигнализации (Loop Start, PRI, SS7) осуществляет **Asterisk**.

1.3. ПРЕИМУЩЕСТВА ПО СРАВНЕНИЮ С Е1 КАРТАМИ РСІ/РСІ-Е

Внешний интерфейс имеет ряд преимуществ по сравнению с традиционными РСІ картами.

- Сервер и Е1 порты могут быть территориально разделены
- Возможна горячая замена интерфейса и добавление новых портов E1 без перезагрузки сервера
- При создании Asterisk серверов с резервированием, основной и резервные серверы могут использовать общий пул устройств ELF2-AE, что позволяет снизить общую стоимость системы

1.4. ТРЕБОВАНИЯ К СЕРВЕРУ И LAN ОКРУЖЕНИЮ

Протокол TDMoE реализован непосредственно над MAC уровнем Ethernet, поэтому в тракте Ethernet между ELF2-AE и сервером нельзя использовать маршрутизаторы, допустимы только коммутаторы (свитчи).

Отдельно необходимо обратить внимание на качество передачи пакетов Ethernet (QoS) в сети, где устанавливается ELF2-AE. Кольцевой буфер, реализованный в устройстве, компенсирует задержки пакетов до 3-4 мс. На практике это означает, что допустимо подключение устройства через 2-3 свитча. Интенсивный посторонний трафик на порту сервера может вызвать потери пакетов. Также потери пакетов может вызвать запуск Asterisk на виртуальной машине.

Количество устройств ELF2-AE, которые могут быть подключены к серверу, логически не ограничено и определяется быстродействием PC и конфигурацией Asterisk.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1. ОБЩИЕ ПАРАМЕТРЫ

Параметр	значение
габариты (настольный/стоечный), мм	140x110x35 / 480x105x44
вес (настольный / стоечный), кг	0.35 / 0.85
энергопотребление	5 вт
рабочий диапазон температур	от +5°С до +45°С
температура хранения и транспортировки	от -40°С до +70°С
относительная влажность	до 80%
напряжение питания	220 в +- 20%

2.2. ПАРАМЕТРЫ ИНТЕРФЕЙСА Е1А

Параметр	значение
тип соединителя	RJ45, 8 контактов
тип линии	симметричная витая пара, 120 ом
номинальное напряжение импульса	3 B +- 10%
скорость передачи данных	2048 кбит/с +- 50 ppm
Кодирование	AMI/HDB3
Затухание сигнала, не более, (Е1а)	-40 дб
Затухание сигнала, не более, (E1b)	-6 дб
соответствие стандартам	MCЭ-T G.703, G.704, G.706, G.732, G.823

форма импульса	по рекомендации G.703
размах фазового дрожания	по рекомендации G.823
структура кадров	по рекомендации G.704

2.3. ПАРАМЕТРЫ ИНТЕРФЕЙСА ETHERNET

параметр	значение
тип соединителя	RJ45, 8 контактов
тип линии	симметричная витая пара (UTP)
скорость передачи данных, мбит/с	100
соответствие стандартам	IEEE 802.3
режимы работы	Дуплекс, полудуплекс, автоопределение

2.4. ПАРАМЕТРЫ КОНСОЛИ

Параметр	Значение
Стандарт	USB
Режим работы	Эмуляция последовательного порта
скорость передачи данных, в режиме эмуляции, кбит/с	38400
контроль потока	Отсутствует

3. ПОДКЛЮЧЕНИЕ УСТРОЙСТВА

3.1. РАСПОЛОЖЕНИЕ ОРГАНОВ УПРАВЛЕНИЯ, ИНДИКАЦИИ И РАЗЪЕМОВ

На передней панели расположены:

- кнопка сброса (Reset)
- индикатор включения питания (Power)
- индикатор режима 100 Мбит Ethernet (100TX)
- индикатор целостности линии Ethernet (Link)
- индикатор E1, канал а (E1-а)
- разъем консоли типа USB-В

ЭЛЬФ-2 конвертор интерфейсов	Console
Peeed Lint 1001 Power	\$1 ¹⁰ \$1 ²⁰
Декларация о соответствии Д-СПД-0710	

На задней панели расположены следующие разъемы:

- 8 контактный разъем для подключения к сети Ethernet "витая пара" типа RJ-45
- 8 контактный разъем порта E1A типа RJ-45
- гнездо для подключения источника питания (DC)

Рис. З. Задняя панель

3.2. ОПИСАНИЕ РАЗЪЕМОВ

Контакт	Цепь	Направление
1	RX+	Вход
2	RX-	Вход
3,6	Не используются	
4	TX+	Выход
5	TX-	Выход
7,8	Общий	

Табл. 1. Сигналы разъема Е1А

Контакт	Цепь	Направление
1	TX+	Выход
2	TX-	Выход
3	RX+	Вход
4,5	Не используются	
6 RX-		Вход
7,8 Не используются		

Табл. 2. Сигналы разъема Ethernet

контакт	сигнал
1	
2	Data-
3	Data+
4	GND

Табл. 3. Сигналы разъемы консоли USB

4. КОНФИГУРАЦИЯ УСТРОЙСТВА

4.1. ПОДКЛЮЧЕНИЕ КОНСОЛИ

Подключение консольного порта осуществляется к USB порту компьютера с помощью кабеля-переходника, входящего в комплект устройства. Консоль работает в режиме эмуляции последовательного порта (COM), поэтому после подключения кабеля в системе должен появиться дополнительный последовательный порт. Проконтролировать это можно в диспетчере устройств. В папке «Порты COM и LPT» появится устройство «USB Serial Port (COM3)». Если дополнительный порт не появился, необходимо установить драйвер USB устройства, который расположен в папке \\asteroid\USB_console_drv\ на диске, входящем в комплект устройства. Драйвер также можно скачать с сайта http://www.ftdichip.com.

После появления дополнительного порта, к нему необходимо подключиться терминальной программой Teraterm (или hyperterm) с параметрами 38400, 8b, 1s, np, flow control=off. Необходимо помнить, что после выключения/включения банка каналов, терминальную программу необходимо также перезапустить.

4.2. ГЛАВНОЕ МЕНЮ ПРОГРАММЫ КОНФИГУРАЦИИ

После включения питания (или сброса) устройство выводит на консоль главное меню и переходит в режим ожидания. Настройка параметров устройства осуществляется путем перехода по системе иерархических меню и выбора нужных параметров для редактирования. После редактирования параметров настройки можно сохранить в энергонезависимой памяти, для чего существует соответствующий пункт меню.

Экран разбит на две части. В верхней части экрана выводится информация о версии ПО, версии прошивки, наиболее важных настройках и статусах линий.

В нижней части экрана выводится текущее меню (см. Рис. 6).

```
ELF2-AE monitor, v0.14 18/04/2007, Updates: http://parabel.ru/
Firmware: ELF2-AST{0xA}, Revision: 0x6
E1/A Cfg: Line code=HDB3, Clock=Internal, CRC4=On
E1/B Cfg: Line code=HDB3, Clock=Internal, CRC4=On
E1/A status: LOS=Off, LOF=Off, LOM=Off, LOC=Off, RAIS=Off, FrErr=0/0
E1/B status: LOS=Off, LOF=Off, LOM=Off, LOC=Off, RAIS=Off, FrErr=0/0
TDMOE {status : SkipEr=0, SlipEr=0, RxNuEr=0 <> mac: 00555555500}
1. Configuration >>
2. Status >>
3. Test >>
3. Test >>
8. Start bootloader
9. Reset
```

Рис. 4. Главное меню

Для выбора пункта используйте цифры 0-9. Остальные клавиши будут игнорироваться.

Для выхода из меню на уровень вверх нажмите 0.

4.3. ОБЩИЕ НАСТРОЙКИ

Configuration/Common/VCO – установка параметров ФАПЧ (PLL)

Фазовая автоподстройка частоты (PLL) обеспечивает синхронную работу ELF2 в ведомом режиме, когда необходимо подстроиться по частоте потока Ethernet кадров. Это бывает необходимо, если к серверу подключено несколько устройств ELF2 или дополнительно установлена PCI карта E1.

VCO=0

Выключить PLL (по умолчанию). Устройство работает по частоте порта E1, сервер Asterisk синхронизуется от потока Ethernet кадров, создаваемых ELF2.

VCO=2

PLL включен. Устройство использует сервер Asterisk в качестве источника синхронизации, частота E1 задается потоком Ethernet кадров от сервера. Для этого режима также обязательно включение "Configuration/E1/Clock source = Internal". Данный режим необходимо использовать только в случае совместной работы двух (и более) устройств ELF2, при условии, что одно из устройств синхронизирует сервер (VCO=0).

VCO=80

Диагностический режим. В поле статистики SkipErr будет отображаться максимальный период между пакетами Ethernet в микросекундах.

Configuration/Common/MAC – установка MAC адреса Ethernet порта устройства.

Configuration/Common/DST MAC – адрес устройства-партнера. При работе с сервером Asterisk, достаточно установить DST MAC=000000000000. В этом случае адрес сервера определяется автоматически. Устройство ожидает первый пакет с верным адресом назначения и отправляет в ответ поток TDMoE. Если поле DST MAC ненулевое, поток TDMoE будет отсылаться по указанному адресу при наличии потока E1. Поле DST MAC необходимо задавать при работе ELF2-AE парой, когда через Ethernet пробрасывается поток E1.

Configuration/Common/Full duplex – включить (On) или выключить (Off) режим (принудительного) полного дуплекса для порта Ethernet.

Configuration/Common/EC – включить (On) или выключить (Off) функцию аппаратного эхоподавления. Опция работает только для модели ELF2-AE-EC, которая имеет модуль эхоподавления. Если модуль эхоподавления (EC) отсутствует, пункт меню всегда находится в значении Off. После включения модуля EC необходимо сохранить конфигурацию и перезагрузить устройство.

4.4. НАСТРОЙКИ ПОРТА Е1А

Configuration/E1/Line code – установка требуемого линейного кода порта E1a (AMI или HDB3).

Configuration/E1/Clock source – выбор источника синхронизации E1. *Line* – синхронизация по приемному потоку E1, *Internal* – синхронизация по внутреннему источнику. В общепринятой терминологии, *Line* соответствует режиму E1 slave, *Internal* соответствует E1 master.

Configuration/E1/CRC4 – включить (on) или выключить (off) генерацию CRC4 в направлении передачи

4.5 СОХРАНЕНИЕ/ВОССТАНОВЛЕНИЕ НАСТРОЕК

Configuration/Factory – восстановление заводских настроек (без сохранения)

Configuration/Restore – восстановление настроек из энергонезависимой памяти

Configuration/Save – сохранение настроек в энергонезависимой памяти

4.6. СРЕДСТВА ТЕСТИРОВАНИЯ И ДИАГНОСТИКИ

Test/E1/Lloop – включение внутреннего шлейфа на соответствующем порту E1 (см. "Рис. 7. Режим Lloop").

Рис. 5. Режим Lloop

Test/E1/Rloop – включение удаленного шлейфа на соответствующем порту E1 (см. "Рис. 8. Режим Rloop").

Test/E1/TAOS – посылка сигнала аварии (все "1")

Test/E1/Freq – замерить и отобразить частоту несущей E1 по отношению к внутренней опорной синхронизации устройства

5. МОНИТОРИНГ РАБОТЫ УСТРОЙСТВА

Статусы портов E1 распечатываются в строке E1 status в шапке экранного меню.

Поле	Расшифровка	Значение	Комментарий
LOS	Lost Of Signal	On	Нет сигнала Е1
		Off	Сигнал Е1 присутствует, нет аварии
LOF	Lost Of Frame	On	Не обнаружена структура фрейма G.704
		Off	Есть фреймовая синхронизация в соответствии с G.704
LOM	Lost Of Multiframe	On	Не обнаружена структура CAS мультифрейма
		Off	Есть синхронизация по CAS мультифрейму
LOC	Lost Of CRC4	On	Не обнаружена правильная последовательность CRC4
		Off	Обнаружена правильная последовательность CRC4
RAIS	Remote Alarm Indication Signal	On	Обнаружена ошибка фрейма ответной (принимающей) стороны
		Off	Нет ошибок фрейма ответной (принимающей) стороны
FrErr	Frame Errors	ХХ/ҮҮҮҮ	XX— 8 разрядный счетчик потерь цикловой сигнализации
			ҮҮҮҮ — 16 разрядный счетчик ошибок CRC4

Табл. 4. Статусная информация портов Е1

Поле	Расшифровка	Комментарий
SkipErr	Skipped errors	Отброшено пакетов из TDMoE (средняя скорость TDMoE выше скорости E1). В нормальном режиме счетчик не должен увеличиваться.
SlipErr	Slipped errors	Повторно передано пакетов (средняя скорость TDMoE ниже скорости E1) . В нормальном режиме счетчик не должен увеличиваться.
RxNuErr	Received Numeration Errors	Нарушений нумерации пакетов в TDMoE
mac	MAC address	(Ethernet)MAC адрес ELF2-AE

Табл. 5. Статусная информация модуля TDMoE

Примечания:

- 1. Обновление статуса происходит только при нажатии на клавиатуру.
- 2. Сброс счетчиков ошибок происходит при обращении к тестовому меню /Status/Clear .

Рост SkipErr или SkipErr возможен, если неправильно выбран источник часов для Asterisk/DAHDI и ELF2-AE. Одновременный рост SlipErr и SkipErr сигнализирует о сильной загрузке Ethernet оборудования (Switch), или некорректной обработке прерываний на сервере.

6. НАСТРОЙКА DAHDI/ASTERISK

Руководство по настройке сервера Asterisk является общим для всех устройств, работающих по протоколу TDMoE, в том числе ELF2. По этой причине руководство вынесено в отдельный документ «Руководство пользователя по настройке DAHDI/Asterisk», доступный к скачиванию по ссылке:

http://parabel.ru/d/manuals/dahdi/tdmox-ru.pdf

7. ИСПОЛЬЗОВАНИЕ МОДУЛЯ АППАРАТНОГО ЭХОПОДАВЛЕНИЯ

Модель ELF2-AE-EC содержит модуль аппаратного эхоподавления (EC), который предназначен для удаления отраженного сигнала, возникающего во внешних аналоговых телефонных портах (см. рисунок).

Рис. 7. Структура модуля эхоподавления

Эффект эха возникает из-за не идеальности аналоговой телефонной линии и при наличии существенных задержек прохождения сигнала от абонента к абоненту (более 30 мс). ЕС модуль удаляет отраженный сигнал из сигнала в направлении «E1 -> сеть» и пропускает в неизменном виде сигнал в направлении «ceть -> E1». Таким образом, удаленный (сетевой) абонент не слышит собственный возвращенный сигнал.

Модуль ЕС имеет следующие характеристики:

- Подавление линейной составляющей эха на уровне -30 .. -40 дб
- Глубина эхоподавления 256 мс
- Автоматическое отключение ЕС при обнаружении сигналов факса, модема

Модуль ЕС должен быть включен в соответствии с п.4.3.

Использование моделей ELF2-AE со встроенным эхоподавителем существенно снижает вычислительную нагрузку на сервер с Asterisk. Программное эхоподавление в Asterisk должно быть выключено путем изменения параметров в файле /etc/asterisk/chan_dahdi.conf:

echocancel=no

- echocancelwhenbridged=no
- echotraining=no

8. ОБНОВЛЕНИЕ ПРОШИВКИ УСТРОЙСТВА

Для обновления прошивки:

- 1. Выясните модификацию устройства (по самой верхней строчке).
- 2. Скачайте необходимую прошивку и программу-программатор.
- 3. Подключите консольный кабель и перезагрузите устройство (подождите 5 секунд).
- 4. Загрузите прошивку командой **flashrs232** -**i** /dev/ttyUSB0 -**w** -**f** elf.bin Данная команда загрузит данные через USB порт.
- Проверьте версию прошивки.
 Так для устройства ELF2-AE в шапке меню должна быть напечатана строка: Firmware: ELF2-AE {0xA}, Revision: XXX
- Если предыдущий шаг прошел успешно устройство уже перезагружено с новой прошивкой, и готово к работе.

9. КОМПЛЕКТАЦИЯ УСТРОЙСТВА

Устройство поставляется в следующей комплектации:

- ELF2-AE 1 шт
- Консольный кабель (USBA-USBB) 1 шт
- СD диск с документацией 1 шт
- Блок питания 220В 1 шт

Отдельно могут приобретаться сопутствующие аксессуары:

Блок питания 36..72В

10. УПАКОВКА

Устройство поставляется в гофрокартонной коробке. Упаковка допускает складирование в сухих закрытых помещениях, не более 10 штук в стопке.

ПРИЛОЖЕНИЕ А. СХЕМЫ ПРИМЕНЕНИЯ

ЦЕНТР ОБРАБОТКИ ВЫЗОВОВ (CALL CENTER) И ОРГАНИЗАЦИЯ INTERACTIVE VOICE RESPONSE (IVR)

В рамках данной схемы возможна реализация, как простой очереди вызовов, так и голосового меню с возможностью отправки факса с запрошенной информацией.

Возможен следующий сценарий, абонент телефонной сети набирает номер провайдера услуг. Сигнализационные и голосовые данные E1 передаются через Ethernet до **Asterisk**, где подвергаются обработке. В зависимости от пользовательской конфигурации, **Asterisk** запускает программу - обработчик, определяющую реакцию на DTMF-сигналы. Таким обработчиком, например, может быть программа-шлюз факс->электронная почта.

узел доступа клиентов по линии е1

Устройство ELF2-AE и программное обеспечение пакета **DAHDI** позволяют создать <u>недорогую платформу</u> для предоставления клиентам выделенных каналов передачи данных.

В приведенном примере, клиенты получают HDLC поток, упакованный в указанные канальные интервалы. В качестве протокола канального уровня может выступать PPP, Cisco, Frame Relay, X25. Один поток E1 может использоваться несколькими клиентами (до 31).

КОРПОРАТИВНАЯ АТС С ВЫХОДОМ В VOIP СЕТЬ

В рамках данной схемы офис может быть подключен к сети провайдера IP телефонии или корпоративной VoIP сети компании. При этом достигается снижение затрат на телефонию.

Возможен следующий сценарий, локальные пользователи набирают междугородный номер. ПО **Asterisk** получает запрашиваемый номер, и, выяснив, что звонок междугородный, направляет его через сеть провайдера IP телефонии. Если сеть VoIP недоступна - отправляет вызов через публичную телефонную сеть.

VOIP-ШЛЮ3

Шлюз может служить основой "карточной" платформы ІР телефонии.

Клиент набирает телефонный номер провайдера услуг. Получив запрос, **Asterisk** запрашивает номер карты, pin-код и вызываемый номер. Получив все данные, **Asterisk** отправляет звонок через VoIP сеть, осуществляя взаимодействие с биллинговой системой.

ПРИЛОЖЕНИЕ В. ПРОВЕРКА СВЯЗИ ELF2-AE + DAHDI

Последовательность действий:

- 1. Сконфигурируйте DAHDI/Asterisk в соответствии с документом «Руководство пользователя по настройке DAHDI/Asterisk»
- 2. Сконфигурируйте устройство.
- 3. Подключите Е1 порт к линии.
- 4. Запустите dahdi_tool (SPAN должен перейти в статус OK).
- 5. Обновляйте экран терминала (пробелом). Счетчики SlipErr, SkipErr, RxNuErr, FrErr не должны расти.

Если SPAN находится в статусе RED alarm:

- 1. Проверьте, что mac adpec в мониторе ELF2-AE совпадает с адресом в конфигурации DAHDI
- 2. Убедитесь, что кабель Ethernet исправен (по статистике Ethernet в Linux и лампочке Link).
- 3. Подключите заворотку к порту E1. Если после подключения заворотки E1 SPAN переходит в статус ОК проблема в линии E1.

Рабочий SPAN получен, можно перейти к настройке Asterisk.

ELF2-АЕ Руководство пользователя

- 2.1. -EC option
- 2.2 USB console
- 2.3 1U case
- 2.4. Asterisk/DAHDI manual removed to other doc